R Deep Learning Projects

Herausgeber: Packt Publishing Veröffentlichungsdatum: 2018-02-22

Beschreibung

5 real-world projects to help you master deep learning conceptsKey FeaturesMaster the different deep learning paradigms and build real-world projects related to text generation, sentiment analysis, fraud detection, and more Get to grips with R's impressive range of Deep Learning libraries and frameworks such as deepnet, MXNetR, Tensorflow, H2O, Keras, and text2vec Practical projects that show you how to implement different neural networks with helpful tips, tricks, and best practicesBook DescriptionR is a popular programming language used by statisticians and mathematicians for statistical analysis, and is popularly used for deep learning. Deep Learning, as we all know, is one of the trending topics today, and is finding practical applications in a lot of domains.This book demonstrates end-to-end implementations of five real-world projects on popular topics in deep learning such as handwritten digit recognition, traffic light detection, fraud detection, text generation, and sentiment analysis. You'll learn how to train effective neural networks in R-including convolutional neural networks, recurrent neural networks, and LSTMs-and apply them in practical scenarios. The book also highlights how neural networks can be trained using GPU capabilities. You will use popular R libraries and packages-such as MXNetR, H2O, deepnet, and more-to implement the projects. By the end of this book, you will have a better understanding of deep learning concepts and techniques and how to use them in a practical setting.What you will learnInstrument Deep Learning models with packages such as deepnet, MXNetR, Tensorflow, H2O, Keras, and text2vec Apply neural networks to perform handwritten digit recognition using MXNetGet the knack of CNN models, Neural Network API, Keras, and TensorFlow for traffic sign classification -Implement credit card fraud detection with Autoencoders Master reconstructing images using variational autoencoders Wade through sentiment analysis from movie reviews Run from past to future and vice versa with bidirectional Long Short-Term Memory (LSTM) networks Understand the applications of Autoencoder Neural Networks in clustering and dimensionality reductionWho this book is forMachine learning professionals and data scientists looking to master deep learning by implementing practical projects in R will find this book a useful resource. A knowledge of R programming and the basic concepts of deep learning is required to get the best out of this book.

Hide/show more

Zusätzliche Informationen

Genre: Computer science

Angebot: Packt Publishing

Typ: Adobe PDF

Seiten: 258

ISBN: 9781788474559

Zusätzliche Informationen

Genre: Computer science

Angebot: Packt Publishing

Typ: Adobe PDF

Seiten: 258

ISBN: 9781788474559

Weitere eBooks von Liu Yuxi (Hayden) Liu
Laden... Bitte warten